

Descartes Systems (USA) LLC PLT003

EN 300 328 V2.2.2:2019-07 Bluetooth Low Energy

Report: DESC0001.4 Rev. 1, Issue Date: July 27, 2022

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: June 09, 2022 Descartes Systems (USA) LLC EUT: PLT003

Radio Equipment Testing

Standards

Specification	Method
EN 300 328 V2.2.2:2019-07	EN 300 328 V2.2.2:2019-07

Results

Test Description	Result	Specification Section(s)	Method Section(s)	Comments
Accumulated Transmit Time, Frequency Occupation, Hopping Sequence	N/A	4.3.1.4	5.4.4	Not required unless EUT is a FHSS device.
Hopping Frequency Separation	N/A	4.3.1.5	5.4.5	Not required unless EUT is a FHSS device.
RF Output Power	Pass	4.3.2.2	5.4.2	
Power Spectral Density	Pass	4.3.2.3	5.4.3	
Duty Cycle, Tx-Sequence, Tx-Gap	N/A	4.3.2.4	5.4.4	Not required for adaptive equipment.
Medium Utilization	N/A	4.3.2.5	5.4.2	Not required for adaptive equipment.
Adaptivity	N/A	4.3.2.6	5.4.6	Not required for a device with a rated power of less than 10 dBm.
Occupied Channel Bandwidth	Pass	4.3.2.7	5.4.7	
Transmitter Unwanted Emissions in the OOB Domain	Pass	4.3.2.8	5.4.8	
Transmitter Unwanted Emissions in the Spurious Domain	Pass	4.3.2.9	5.4.9	
Receiver Spurious Emissions	N/A	4.3.2.10	5.4.10	Not required for a device which does not have a receive mode.
Receiver Blocking	N/A	4.3.2.11	5.4.11	Not required for a device which does not have a receive mode.
Geo-Location Capability	N/A	4.3.2.12	N/A	Not required. Manufacturer's declaration if implemented.
Application Form For Testing	N/A	N/A	Annex E	Not required to test. Annex must be filled out by the manufacturer and included in the test report.

Deviations From Test Standards

None

Approved By:

KAR Holge

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
	Version added to the standard.	2022-07-27	1
01	Updated the mod log to show 6/9 for each respective test.	2022-07-27	13
	Added appendix with Annex E and corrected order on CoT	2022-07-27	2, 47

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

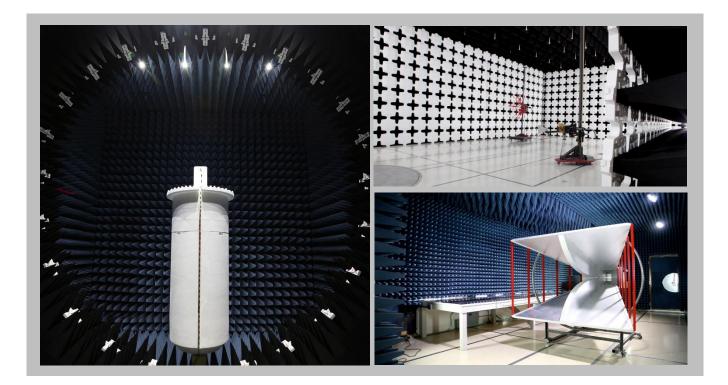
MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.


	SCOPE						
	For details on the Scopes of our Accreditations, please visit:						
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington			

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600					
A2LA									
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06					
Innovation, Science and Economic Development Canada									
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1					
		BSMI							
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R					
VCCI									
A-0029	A-0109	A-0108	A-0201	A-0110					
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA									
US0158	US0175	US0017	US0191	US0157					

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

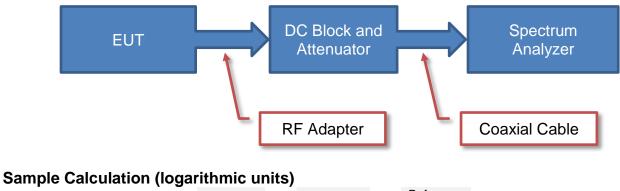
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	3.2 dB	-3.2 dB

TEST SETUP BLOCK DIAGRAMS

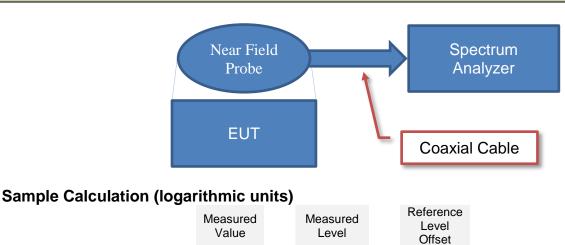


Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	ta Average Data (kHz)		
0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements



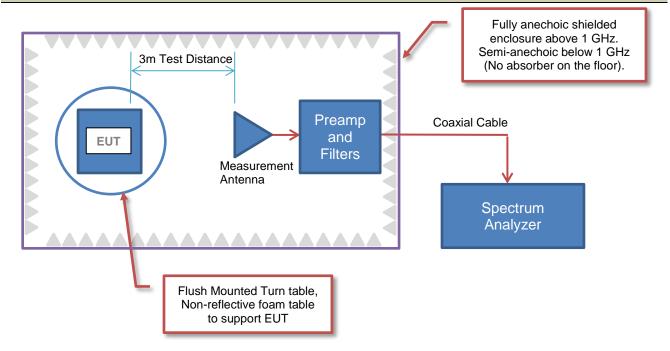
-	Measured Value	-	Measured Level		Reference Level Offset
	71.2	=	42.6	+	28.6

Near Field Test Fixture Measurements

71.2

=

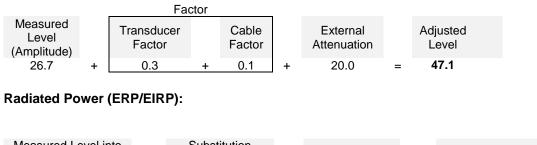
42.6


+

28.6

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

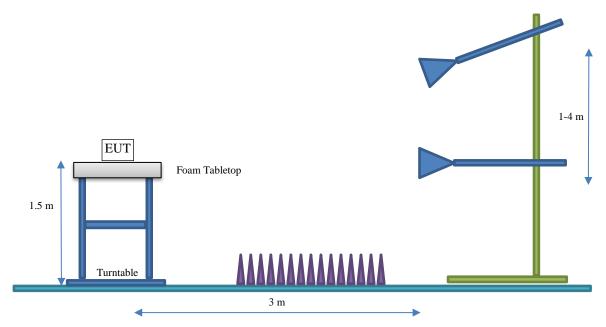


Sample Calculation (logarithmic units)

Radiated Emissions:

			Factor								
Measured Level (Amplitude)	ntenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength
42.6 +	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:


Measured Level into Substitution Antenna (Amplitude dBm)		Substitution Antenna Factor (dBi)		EIRP to ERP (if applicable)		Measured power (dBm ERP/EIRP)
10.0	+	6.0	-	2.15	=	13.9/16.0

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Descartes Systems (USA) LLC
Address:	37 N Orange Ave #500
City, State, Zip:	Orlando, FL 32801
Test Requested By:	Maria Vivas
EUT:	PLT003
First Date of Test:	June 9, 2022
Last Date of Test:	June 9, 2022
Receipt Date of Samples:	June 9, 2022
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Bluetooth Low Energy (BLE) tag used to monitor movement of goods and equipment. Each tag is made up of an Nordic nRF52810-QCAA module encased in a housing. Also included is three lithium cell batteries. It is adverting each 10 seconds

Testing Objective:

To demonstrate compliance of the Bluetooth radio to Article 3.2 of the RED

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA GAIN (dBi)

Туре	Provided by:	Frequency Range (MHz)	Gain (dBi)
Pillar	Manufacturer	2400-2500	-0.4

The EUT was tested using the power settings provided by the manufacturer:

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types / Data				Power Setting
Rates	Туре	Channel	Frequency (MHz)	(dBm)
		37	2402	
BLE / 1 Mbps	DTS	38	2426	4
-		39	2480	

CONFIGURATIONS

Configuration DESC0001-8

Software/Firmware Running During Test	
Description	Version
Firmware	1.0

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
BLE Beacon Tag	COREInsight	PLT003	1
BLE Beacon Tag	COREInsight	PLT003	2
BLE Beacon Tag	COREInsight	PLT003	3

Configuration DESC0001-9

Software/Firmware Running During Test	
Description	Version
Firmware	1.0

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
BLE Beacon Tag	COREInsight	PLT003	4
BLE Beacon Tag	COREInsight	PLT003	6

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2022-06-09	Transmitter Unwanted Emissions in the Spurious Domain	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2022-06-09	RF Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2022-06-09	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2022-06-09	Occupied Channel Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2022-06-09	Transmitter Unwanted Emissions in the OOB Domain	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-8-1-1-H/AC	TBI	NCR	NCR
Meter - Multimeter	Tektronix	DMM912	MMH	2022-03-02	2025-03-02
Thermometer	Omegaette	HH311	DTY	2021-02-04	2024-02-04
Generator - Signal	Agilent	N5183A	TID	2021-05-04	2023-05-04
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2022-03-14	2023-03-14
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2022-03-14	2023-03-14
Cable	Micro-Coax	UFD150A-1-0720-200200	EVI	2021-12-05	2022-12-05
Meter - Power	ETS-Lindgren	7002-006	SRT	2022-06-01	2023-06-01
Attenuator	S.M. Electronics	SA26B-20	AUY	2022-03-15	2023-03-15
Block - DC	Fairview Microwave	SD3379	AMW	2022-03-14	2023-03-14
Directional Coupler	Fairview Microwave	MC2047-10	RGT	2021-07-01	2022-07-01
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

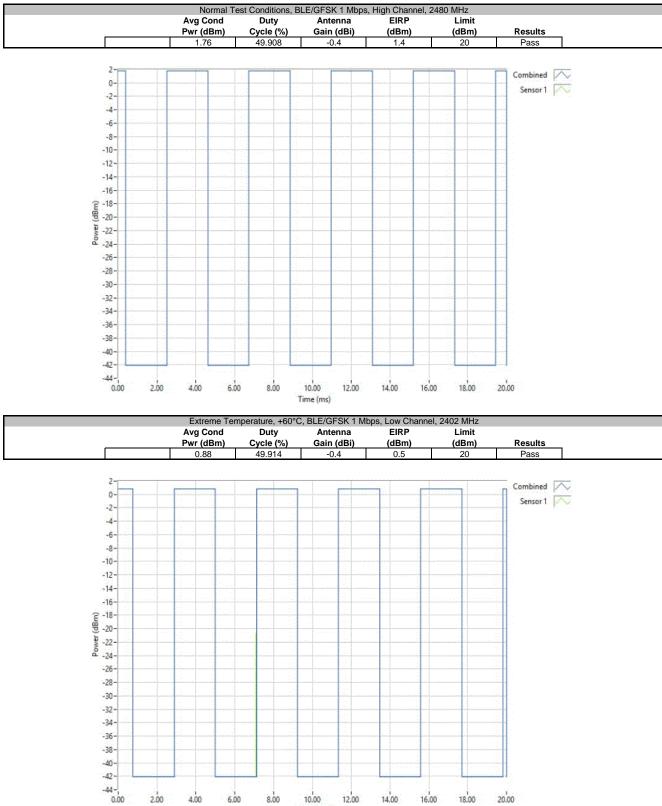
The measurement was made using a direct connection between the RF output of the EUT and an ETSI EN 300 328 compliant RF Power Sensor which only measures across the high time of the burst of the carrier. The measured level was offset by the cable loss, attenuator, and DC block that was used between the power sensor and EUT. This offset was determined prior to testing using a signal generator and spectrum analyzer.

The RF output power was measured with the EUT set to the channels and modes called out in the data sheets.

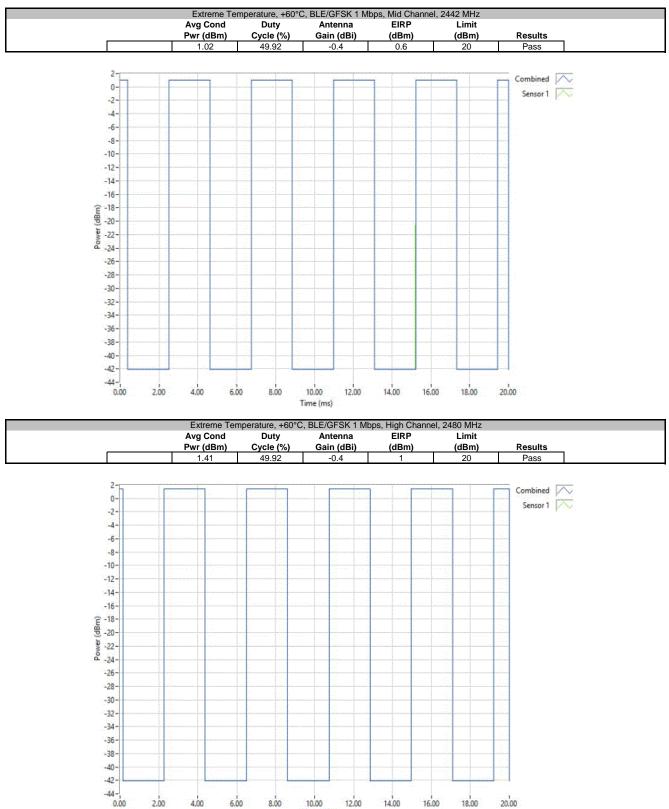
The observed duty cycle was noted but not needed to calculate the EIRP.

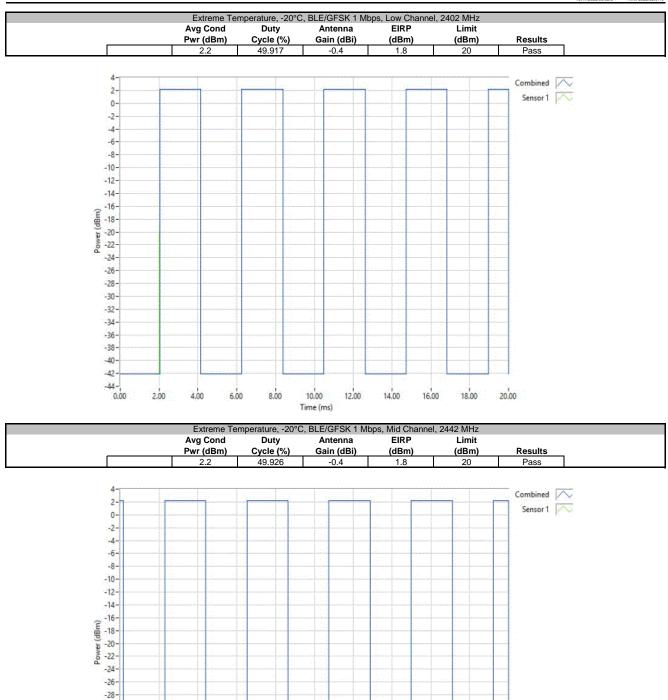
EIRP = Max Measured Power + Antenna gain (dBi)

The measurements were made under normal test and extreme test conditions.



	: PLT003						Work Order:		
Serial Number	: See configuration							9-Jun-22	
Customer	Descartes Systems (USA	A) LLC					Temperature:	22.4 °C	
Attendees	None						Humidity:	47.1% RH	
Project	None						Barometric Pres.:	1016 mbar	
Tested by	Jeff Alcoke		Power	er: 3.0 VDC			Job Site:	EV06	
TEST SPECIFICAT	TIONS			Test Method					
EN 300 328 V2.2.2:	2019-07			EN 300 328 V2.2.2:	2019-07				
COMMENTS				•					
None									
DEVIATIONS FROM	M TEST STANDARD								
LIAHONOTRO									
None									
	8	Signature	JA,						
None		Signature	J.A.	Avg Cond Pwr (dBm)	Duty Cycle (%)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Results
lone Configuration #	8	Signature	JA.	Avg Cond Pwr (dBm)	Duty Cycle (%)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Results
None Configuration #	8 ions	• • •	JA,	Pwr (dBm)	Cycle (%)	Gain (dBi)	(dBm)	(dBm)	
None	8 ions BLE/GFSK 1 Mbps, Low (Channel, 2402 MHz	TAL,	Pwr (dBm) 1.28	Cycle (%) 49.92	Gain (dBi) -0.4		(dBm) 20	Pass
None Configuration #	8 BLE/GFSK 1 Mbps, Low 0 BLE/GFSK 1 Mbps, Mid C	Channel, 2402 MHz Shannel, 2442 MHz	TA.	Pwr (dBm)	Cycle (%)	Gain (dBi)	(dBm)	(dBm)	Results Pass Pass Pass
None Configuration # Normal Test Condit	8 BLE/GFSK 1 Mbps, Low 0 BLE/GFSK 1 Mbps, Mid C BLE/GFSK 1 Mbps, High	Channel, 2402 MHz Shannel, 2442 MHz	IA,	Pwr (dBm) 1.28 1.41	Cycle (%) 49.92 49.917	Gain (dBi) -0.4 -0.4	(dBm) 0.9 1	(dBm) 20 20	Pass Pass
None Configuration # Normal Test Condit	8 BLE/GFSK 1 Mbps, Low 0 BLE/GFSK 1 Mbps, Mid C BLE/GFSK 1 Mbps, High	Channel, 2402 MHz Channel, 2442 MHz Channel, 2480 MHz	Tell,	Pwr (dBm) 1.28 1.41	Cycle (%) 49.92 49.917	Gain (dBi) -0.4 -0.4	(dBm) 0.9 1	(dBm) 20 20	Pass Pass
None Configuration # Normal Test Condit	8 BLE/GFSK 1 Mbps, Low 0 BLE/GFSK 1 Mbps, Mid 0 BLE/GFSK 1 Mbps, High Jare, +60°C BLE/GFSK 1 Mbps, Low 0	Channel, 2402 MHz ihannel, 2442 MHz Channel, 2480 MHz Channel, 2482 MHz	TAI,	Pwr (dBm) 1.28 1.41 1.76	Cycle (%) 49.92 49.917 49.908	Gain (dBi) -0.4 -0.4 -0.4	(dBm) 0.9 1 1.4 0.5	(dBm) 20 20 20 20	Pass Pass Pass
Ione Configuration # Iormal Test Condit	8 BLE/GFSK 1 Mbps, Low 0 BLE/GFSK 1 Mbps, Mid C BLE/GFSK 1 Mbps, High ire, +60°C BLE/GFSK 1 Mbps, Low 0 BLE/GFSK 1 Mbps, Mid C	Channel, 2402 MHz Channel, 2442 MHz Channel, 2480 MHz Channel, 2402 MHz Channel, 2442 MHz	JA,	Pwr (dBm) 1.28 1.41 1.76 0.88	Cycle (%) 49.92 49.917 49.908 49.914	Gain (dBi) -0.4 -0.4 -0.4 -0.4	(dBm) 0.9 1 1.4	(dBm) 20 20 20	Pass Pass Pass Pass
Ione Configuration # Normal Test Condit	8 BLE/GFSK 1 Mbps, Low (BLE/GFSK 1 Mbps, High BLE/GFSK 1 Mbps, High Ire, +60°C BLE/GFSK 1 Mbps, Low (BLE/GFSK 1 Mbps, High	Channel, 2402 MHz Channel, 2442 MHz Channel, 2480 MHz Channel, 2402 MHz Channel, 2442 MHz	TAL,	Pwr (dBm) 1.28 1.41 1.76 0.88 1.02	Cycle (%) 49.92 49.917 49.908 49.914 49.92	Gain (dBi) -0.4 -0.4 -0.4 -0.4 -0.4	(dBm) 0.9 1 1.4 0.5 0.6	(dBm) 20 20 20 20 20 20	Pass Pass Pass Pass Pass
Ione Configuration # Normal Test Condit	8 BLE/GFSK 1 Mbps, Low (BLE/GFSK 1 Mbps, Mid C BLE/GFSK 1 Mbps, High Ire, +60°C BLE/GFSK 1 Mbps, Low (BLE/GFSK 1 Mbps, Mid C BLE/GFSK 1 Mbps, High Ire, -20°C	Channel, 2402 MHz channel, 2442 MHz Channel, 2480 MHz Channel, 2402 MHz channel, 2442 MHz Channel, 2442 MHz	JA,	Pwr (dBm) 1.28 1.41 1.76 0.88 1.02	Cycle (%) 49.92 49.917 49.908 49.914 49.92	Gain (dBi) -0.4 -0.4 -0.4 -0.4 -0.4	(dBm) 0.9 1 1.4 0.5 0.6	(dBm) 20 20 20 20 20 20	Pass Pass Pass Pass Pass
None Configuration #	8 BLE/GFSK 1 Mbps, Low (BLE/GFSK 1 Mbps, High BLE/GFSK 1 Mbps, High Ire, +60°C BLE/GFSK 1 Mbps, Low (BLE/GFSK 1 Mbps, High	Channel, 2402 MHz Channel, 2442 MHz Channel, 2480 MHz Channel, 2402 MHz Channel, 2442 MHz Channel, 2480 MHz Channel, 2402 MHz	TA,	Pwr (dBm) 1.28 1.41 1.76 0.88 1.02 1.41	Cycle (%) 49.92 49.917 49.908 49.914 49.92 49.92	Gain (dBi) -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	(dBm) 0.9 1 1.4 0.5 0.6 1	(dBm) 20 20 20 20 20 20 20 20	Pass Pass Pass Pass Pass Pass





14.00

16.00

12.00

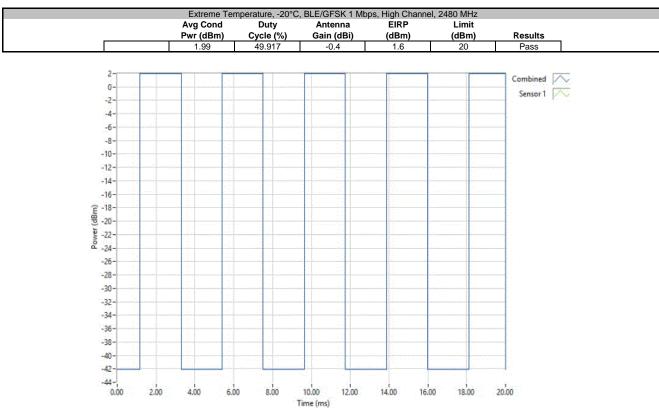
18.00

20.00

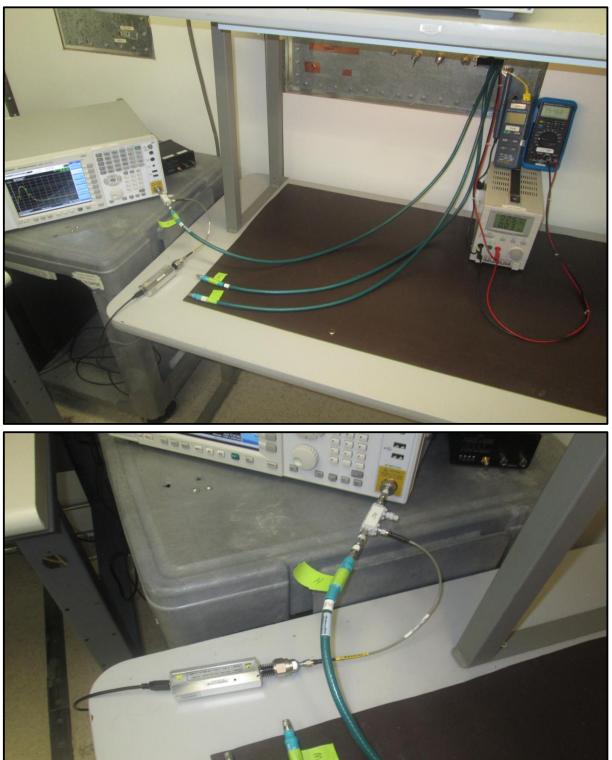
-30--32--34--36--38--40--42--42--44-0.00

2.00

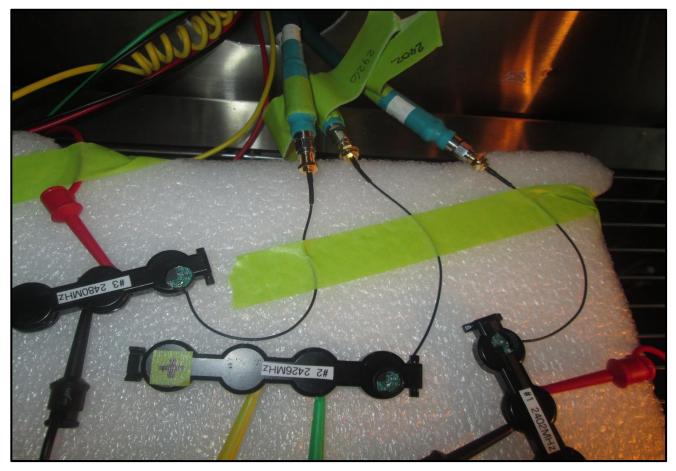
4.00


6.00

8.00


10.00

Time (ms)



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

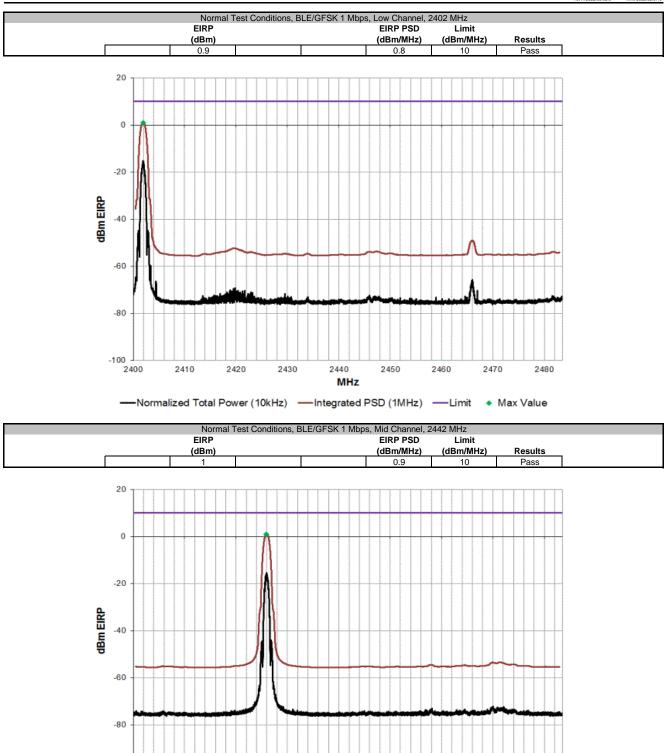
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TID	2021-05-04	2023-05-04
Meter - Multimeter	Tektronix	DMM912	MMH	2022-03-02	2025-03-02
Cable	Micro-Coax	UFD150A-1-0720-200200	EVI	2021-12-05	2022-12-05
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2022-03-14	2023-03-14
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2022-03-14	2023-03-14
Attenuator	S.M. Electronics	SA26B-20	AUY	2022-03-15	2023-03-15
Block - DC	Fairview Microwave	SD3379	AMW	2022-03-14	2023-03-14
Directional Coupler	Fairview Microwave	MC2047-10	RGT	2021-07-01	2022-07-01
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The Power Spectral Density was measured with the EUT set to the channels and modes called out in the data sheets.

The EUT antenna gain and duty cycle were used to calculate the output power of the EUT, and included in the calculations for Power Spectral Density. The measurements were made under normal test conditions.


The spectrum analyzer was set to a 10kHz RBW and 30kHz VBW, while utilizing an RMS detector. A total of 8350 points were captured across the spectrum. The traces were captured both graphically and in point format. The data points were normalized based on RF Output Power (EIRP) measurements located elsewhere in this report.

The reported Power Spectral Density is the highest sum for any 1MHz window in the specified spectrum.

				TbtTx 2022.05.02.0	XMit 2022.02.0
EUT: PL	LT003		Work Order:	DESC0001	
Serial Number: Se	ee configuration			9-Jun-22	
Customer: De	escartes Systems (USA) LLC		Temperature:		
Attendees: No				47.1% RH	
Project: No			Barometric Pres.:		
Tested by: Je		Power: 3.0 VDC	Job Site:	EV06	
TEST SPECIFICATION	NS	Test Method			
EN 300 328 V2.2.2:2019	9-07	EN 300 328 V2.2.2:2019-07			
COMMENTS					
COMMENTS					
None					
	EST STANDARD				
None	EST STANDARD				
None DEVIATIONS FROM T	EST STANDARD				
None DEVIATIONS FROM T	EST STANDARD	Tol M			
None DEVIATIONS FROM TI None		JAIM.			
None DEVIATIONS FROM TI None	8	Jal Erp	EIRP PSD	Limit	
None DEVIATIONS FROM TI None	8	EIRP (dBm)	EIRP PSD (dBm/MHz)	Limit (dBm/MHz)	Results
None DEVIATIONS FROM TI None	8 Signature				Results
None DEVIATIONS FROM TH None Configuration # Normal Test Conditions	8 Signature				Results Pass
None DEVIATIONS FROM TH None Configuration # Normal Test Conditions BL	8 Signature	(dBm)	(dBm/MHz)	(dBm/MHz)	

2440

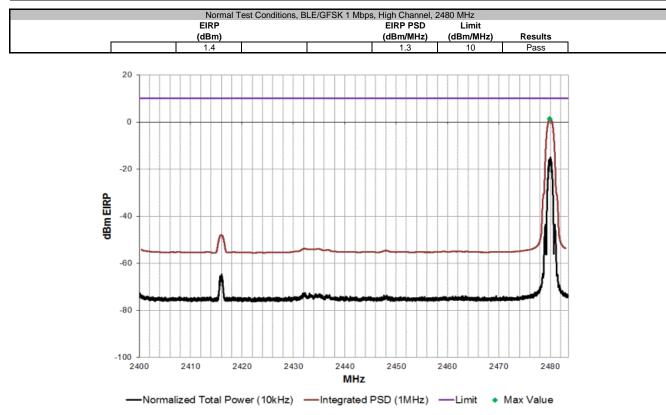
MHz

2430

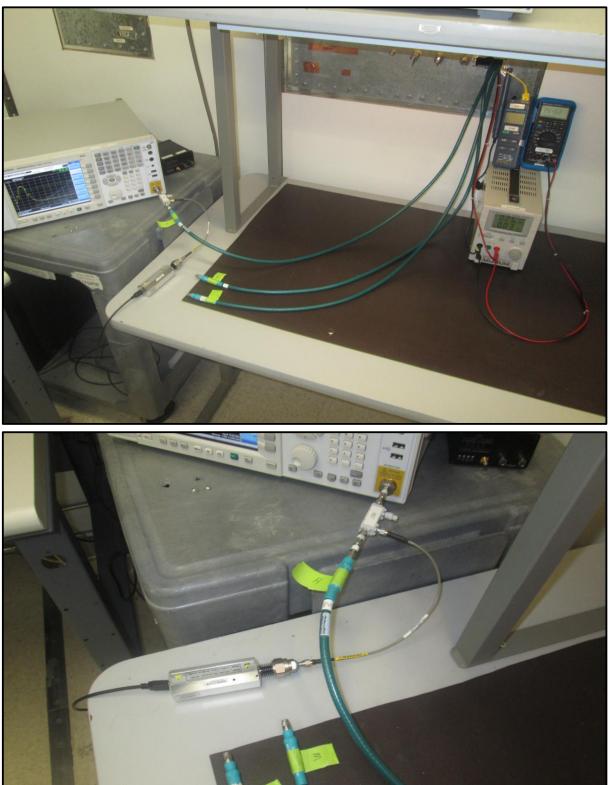
2450

2460

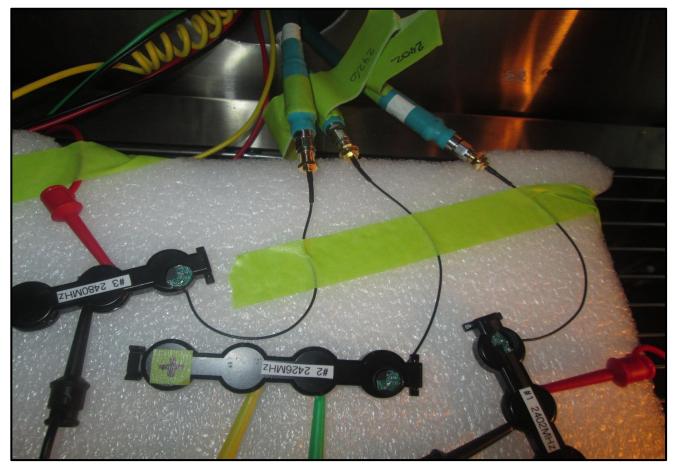
2470


2480

2420


2410

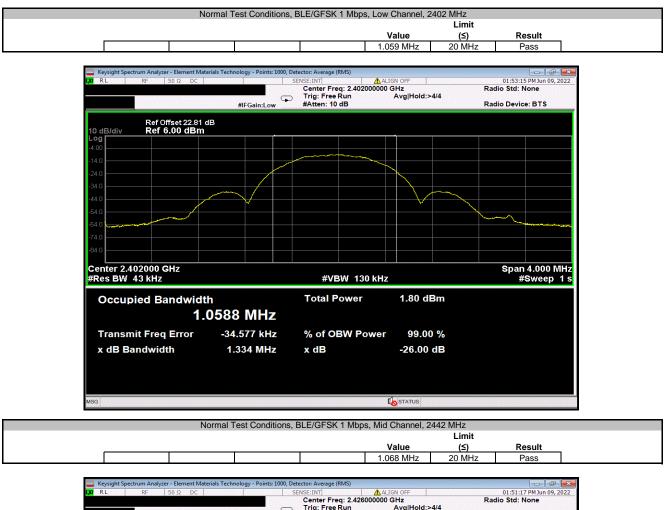
-100 2400

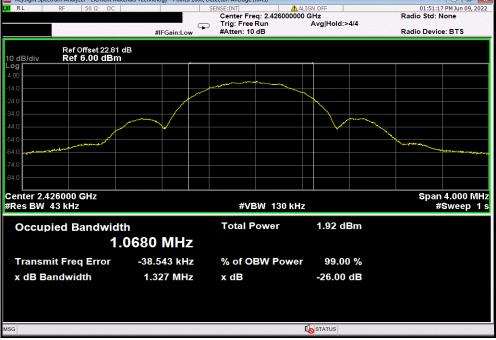


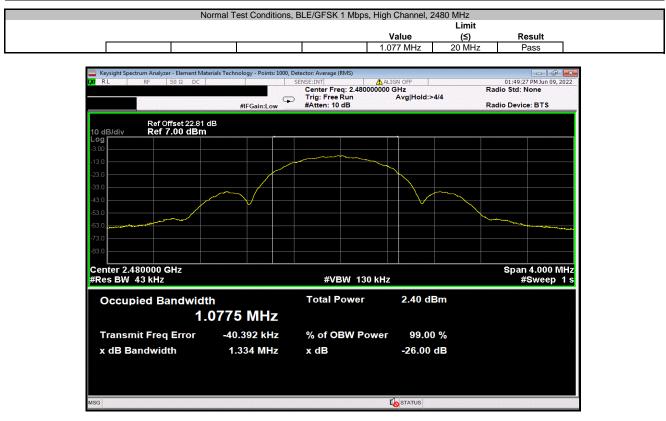
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

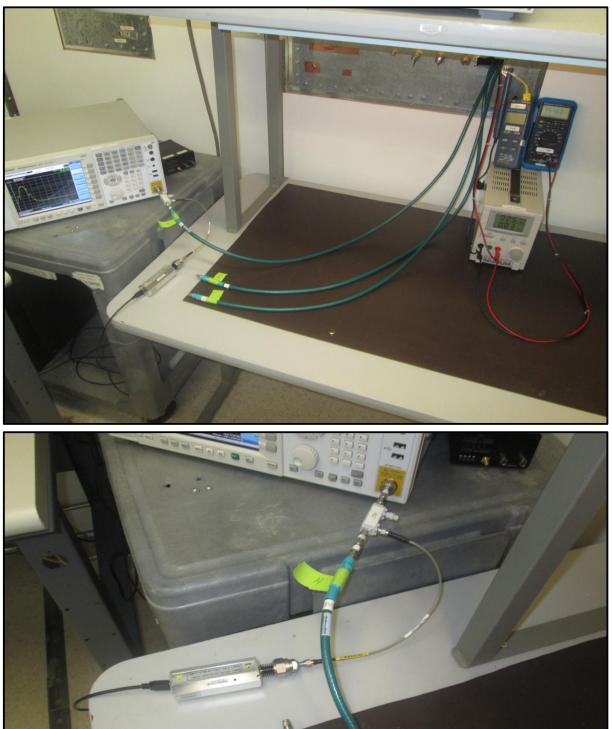
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TID	2021-05-04	2023-05-04
Meter - Multimeter	Tektronix	DMM912	MMH	2022-03-02	2025-03-02
Cable	Micro-Coax	D150A-1-0720-200	EVI	2021-12-05	2022-12-05
Cable	Micro-Coax	D150A-1-0720-200	EVK	2022-03-14	2023-03-14
Cable	Micro-Coax	D150A-1-0720-200	EVH	2022-03-14	2023-03-14
Attenuator	S.M. Electronics	SA26B-20	AUY	2022-03-15	2023-03-15
Block - DC	Fairview Microwave	SD3379	AMW	2022-03-14	2023-03-14
Directional Coupler	Fairview Microwave	MC2047-10	RGT	2021-07-01	2022-07-01
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

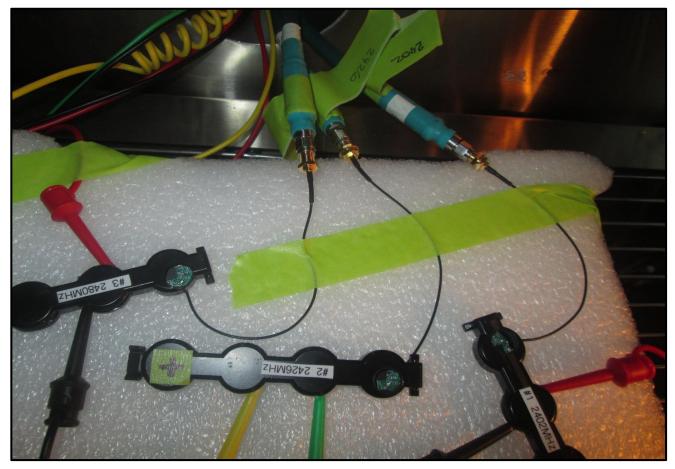
TEST DESCRIPTION


The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.


The occupied channel bandwidth was measured with the EUT set to the channels and modes as listed on the data sheets. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode. The 99% occupied bandwidth measurement was made using the spectrum analyzer built in Occupied Bandwidth measurement function. The analyzer was set to a span equaling 2 times the nominal bandwidth, with a RBW of 1% of the span, VBW of 3 times the RBW, and utilizing an RMS detector.


		TbtTx 2022.05.02.0	XMit 2022.02.07.0
EUT: PLT003	Work Order:	DESC0001	
Serial Number: See configuration	Date:	9-Jun-22	
Customer: Descartes Systems (USA) LLC	Temperature:	22.3 °C	
Attendees: None	Humidity:	47.2% RH	
Project: None	Barometric Pres.:	1015 mbar	
Tested by: Jeff Alcoke Power: 3.0 VDC	Job Site:	EV06	
TEST SPECIFICATIONS Test Method			
EN 300 328 V2.2.2:2019-07 EN 300 328 V2.2.2:2019-07			
COMMENTS			
None			
DEVIATIONS FROM TEST STANDARD			
None			
Configuration # 8 Signature			
		Limit	
	Value	(≤)	Result
Normal Test Conditions			
BLE/GFSK 1 Mbps, Low Channel, 2402 MHz	1.059 MHz	20 MHz	Pass
BLE/GFSK 1 Mbps, Mid Channel, 2442 MHz	1.068 MHz	20 MHz	Pass
BLE/GFSK 1 Mbps, High Channel, 2480 MHz	1.077 MHz	20 MHz	Pass





OCCUPIED CHANNEL BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

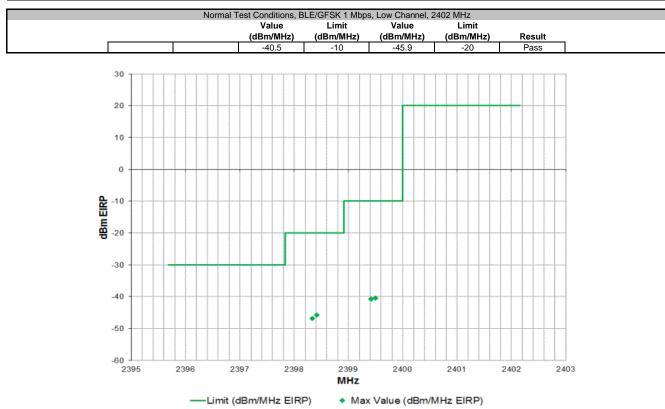
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TID	2021-05-04	2023-05-04
Meter - Multimeter	Tektronix	DMM912	MMH	2022-03-02	2025-03-02
Cable	Micro-Coax	UFD150A-1-0720-200200	EVI	2021-12-05	2022-12-05
Cable	Micro-Coax	UFD150A-1-0720-200200	EVK	2022-03-14	2023-03-14
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2022-03-14	2023-03-14
Attenuator	S.M. Electronics	SA26B-20	AUY	2022-03-15	2023-03-15
Block - DC	Fairview Microwave	SD3379	AMW	2022-03-14	2023-03-14
Directional Coupler	Fairview Microwave	MC2047-10	RGT	2021-07-01	2022-07-01
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFO	2021-07-06	2022-07-06

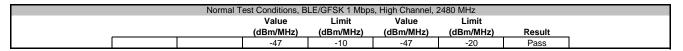
TEST DESCRIPTION

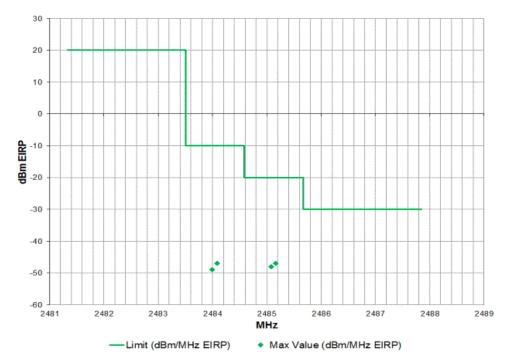
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The measurement was made using a RMS detector, with a 1 MHz RBW and 3 MHz VBW. The level of emissions shall be measured using a RMS Average detector with the Time Domain Power function.

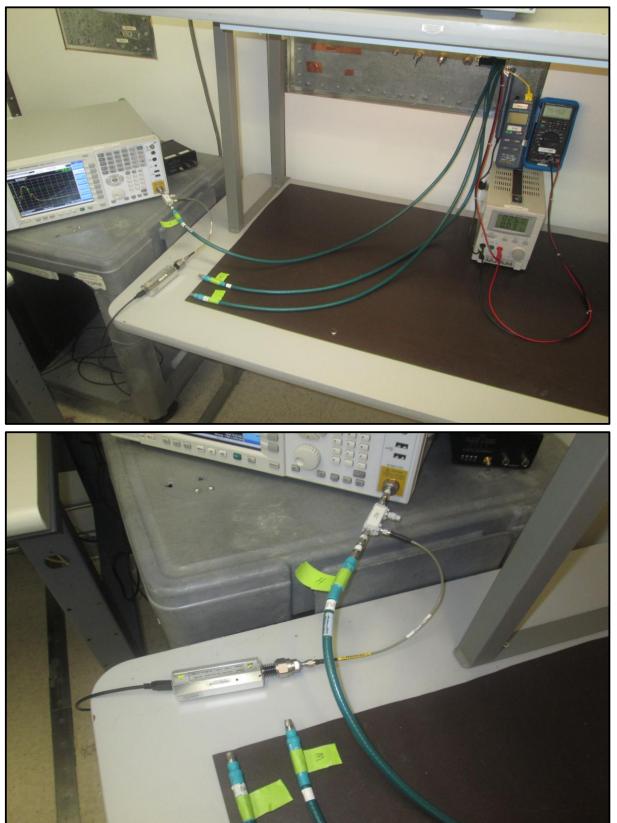
The frequency ranges of the limit steps are dependent on the measured Occupied Channel Bandwidth (contained elsewhere in the report)

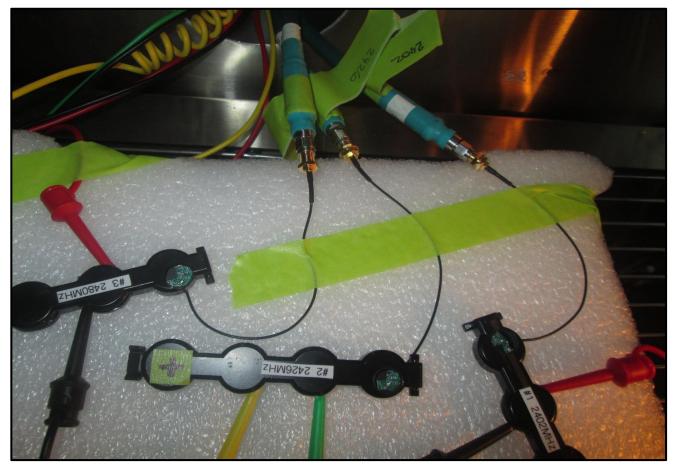

The declared antenna assembly gain (dBi) was added to the measurement system offset.


The Screen Captures show compliance to each OOB steps/spans as defined in the Transmit Mask.



						TbtTx 2022.05.02.0	XMit 2022.02.0
EUT: PLT003					Work Order:	DESC0001	
Serial Number: See configuration					Date:	9-Jun-22	
Customer: Descartes Systems	s (USA) LLC				Temperature:		
Attendees: None					Humidity:		
Project: None					Barometric Pres.:		
Tested by: Jeff Alcoke		Power: 3.0 VDC			Job Site:	EV06	
TEST SPECIFICATIONS		Test Met	thod				
EN 300 328 V2.2.2:2019-07		EN 300 3	328 V2.2.2:2019-07				
COMMENTS							
None							
DEVIATIONS FROM TEST STANDARD							
None							
Configuration # 8	Signature	Jef /					
			Value (dBm/MHz)	Limit (dBm/MHz)	Value (dBm/MHz)	Limit (dBm/MHz)	Result
Normal Test Conditions							
BLE/GFSK 1 Mbps,	Low Channel, 2402 MHz		-40.5	-10	-45.9	-20	Pass
DI E/OEOK 4 Miles	High Channel, 2480 MHz		-47	-10	-47	-20	Pass





TEST DESCRIPTION

The EUT was operated in a worst-case configuration in transmit mode. The spectrum was scanned from 30 MHz to 12.75 GHz with the EUT set to its lowest and highest transmit frequencies.

While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity. The amplitude and frequency of the highest emissions were noted. The EUT was then replaced with a substitution antenna that varies depending on the frequency range of the emission. A ½ wave dipole that is successively tuned to each of the highest spurious emissions is utilized from 400-1000 MHz. Below 400 MHz, a small biconical antenna is utilized due to the increasing size of the dipole to match the ½ wavelength. Above 1 GHz, a horn antenna is utilized.

A signal generator is then connected to the substitution antenna and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the substitution antenna and its gain (dBi); the radiated power (dBm) for each radiated spurious emission is determined.

Emissions radiated by the cabinet and the antenna identified during the pre-scans were measured using a RMS Average detector with the Time Domain Power function. If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	2021-12-09	2022-12-09
Antenna - Biconilog	EMCO	3142B	AXJ	2021-03-03	2023-03-03
Antenna - Double Ridge	EMCO	3115	AHC	2020-07-01	2022-07-01
Antenna - Standard Gain	ETS Lindgren	3160-07	AHU	NCR	NCR
Antenna - Standard Gain	ETS Lindgren	3160-08	AHV	NCR	NCR
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AOL	2021-11-17	2022-11-17
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAG	2022-05-03	2023-05-03
Amplifier - Pre-Amplifier	L-3 Narda-MITEQ	AMF-6F-08001200-30-10P	PAO	2021-11-17	2022-11-17
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	2021-11-17	2022-11-17
Cable	N/A	Bilog Cables	EVA	2021-11-17	2022-11-17
Cable	N/A	Double Ridge Horn Cables	EVB	2022-05-03	2023-05-03
Cable	None	Standard Gain Horn Cables	EVF	2021-11-17	2022-11-17
Attenuator	Coaxicom	3910-20	AXZ	2022-02-10	2023-02-10
Filter - High Pass	Micro-Tronics	HPM50111	HFO	2021-11-17	2022-11-17
Antenna - Double Ridge	ETS Lindgren	3115	AIZ	2022-03-02	2024-03-02
Generator - Signal	Keysight	N5182B	TFU	2020-11-20	2022-11-20
Power Sensor	Spanawave	80701A	SPL	2022-05-31	2023-05-31
Meter - Power	Spanawave	8651A	SOT	2022-05-31	2023-05-31

MEASUREMENT UNCERTAINTY

Description	
Expanded k=2	5.2 dB

FREQUENCY RANGE INVESTIGATED

30 MHz TO 12750 MHz

POWER INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

DESC0001-9

MODES INVESTIGATED

BLE, GFSK, 1 Mbps, Low Channel = 2402 MHz, High Channel = 2480 MHz

-5.2 dB

-15		
-25		
-25		
-35		
ε Ι Ι Ι ΙΙΙΙΙ ΙΙΙ ΙΙΙ ΙΙΙΙ ΙΙΙΙ		
ö -45		
-65		
-65		
-75		1 I I I I I I I
-75		
	+ +	
-85 <u>10 100 1,000</u>	10,000	100,000

RESULTS - Run #27

Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
7206.375	2.5	66.0	Horz	AV	20.8E-9	-46.8	-30.0	-16.8	Low Ch, EUT Horz
4959.925	2.3	127.0	Horz	AV	16.1E-9	-47.9	-30.0	-17.9	High Ch, EUT Horz
7440.408	1.5	249.0	Vert	AV	14.0E-9	-48.5	-30.0	-18.5	High Ch, EUT Horz
7206.408	2.3	66.0	Vert	AV	9.1E-9	-50.4	-30.0	-20.4	Low Ch, EUT Horz
7440.483	2.0	36.0	Horz	AV	7.4E-9	-51.3	-30.0	-21.3	High Ch, EUT Horz
4959.925	3.1	271.0	Vert	AV	4.6E-9	-53.3	-30.0	-23.3	High Ch, EUT Horz
4801.500	1.5	332.0	Horz	AV	3.7E-9	-54.3	-30.0	-24.3	Low Ch, EUT Horz
4801.567	1.5	128.0	Vert	AV	3.6E-9	-54.4	-30.0	-24.4	Low Ch, EUT Horz
9606.983	1.0	352.0	Horz	AV	2.9E-9	-55.3	-30.0	-25.3	Low Ch, EUT Horz
9606.942	1.0	224.0	Vert	AV	1.9E-9	-57.2	-30.0	-27.2	Low Ch, EUT Horz
9920.692	1.0	13.0	Horz	AV	1.2E-9	-59.3	-30.0	-29.3	High Ch, EUT Horz
9920.758	2.9	288.0	Vert	AV	845.5E-12	-60.7	-30.0	-30.7	High Ch, EUT Horz

CONCLUSION Pass

Tested By

APPENDIX

Annex E (informative): Application form for testing

E.1 Introduction

Notwithstanding the provisions of the copyright clause related to the text of the present document, ETSI grants that users of the present document may freely reproduce the application form pro forma in this annex so that it can be used for its intended purposes and may further publish the completed application form.

93

The form contained in this annex may be used by the manufacturer to comply with the requirement contained in clause 5.4.1 to provide the necessary information about the equipment to the test laboratory prior to the testing. It contains product information as well as other information which might be required to define which configurations are to be tested, which tests are to be performed as well the test conditions.

This application form should form an integral part of the test report.

E.2 Information as required by ETSI EN 300 328 V2.2.2, clause 5.4.1

In accordance with ETSI EN 300 328, clause 5.4.1, the following information is provided by the manufacturer.

a) The type of wideband data transmission equipment:

FHSS

non-FHSS

b) In case of FHSS:

• In case of non-Adaptive FHSS equipment:

The number of Hopping Frequencies:

• In case of Adaptive FHSS equipment:

The maximum number of Hopping Frequencies:

The minimum number of Hopping Frequencies:

The (average) dwell time:

c) Adaptive/non-adaptive equipment:

- non-adaptive Equipment
- adaptive Equipment without the possibility to switch to a non-adaptive mode

adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The maximum Channel Occupancy Time implemented by the equipment: ms

The equipment has implemented an LBT mechanism

• In case of non-FHSS equipment:

The equipment is Frame Based equipment

The equipment is Load Based equipment

94

The equipment can switch dynamically between Frame Based and Load Based equipment

The CCA time implemented by the equipment: µs

The equipment has implemented a DAA mechanism

The equipment can operate in more than one adaptive mode

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.): dBm

The maximum (corresponding) Duty Cycle:%

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

f) The worst case operational mode for each of the following tests:

• RF Output Power

.....

- Power Spectral Density
 -
- Duty cycle, Tx-Sequence, Tx-gap

.....

• Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)

.....

Hopping Frequency Separation (only for FHSS equipment)

.....

Medium Utilization

.....

Adaptivity & Receiver Blocking

Nominal Channel Bandwidth

.....

• Transmitter unwanted emissions in the OOB domain

.....

.....

• Transmitter unwanted emissions in the spurious domain

.....

Receiver spurious emissions

Plug-in radio device

Other
l) The normal and the extreme operating conditions that apply to the equipment:
Normal operating conditions (if applicable):
Operating temperature:°C
Other (please specify if applicable):
Extreme operating conditions:
Operating temperature range: Minimum: °C Maximum°C
Other (please specify if applicable): Minimum: Maximum
Details provided are for the: 🗌 stand-alone equipment
combined equipment
🗌 test jig
m) The intended combination(s) of the radio equipment power settings and one or more antenna assemblies and their corresponding e.i.r.p. levels:
• Antenna Type:
Integral Antenna (information to be provided in case of conducted measurements)
Antenna Gain: dBi
If applicable, additional beamforming gain (excluding basic antenna gain): dB
Temporary RF connector provided
No temporary RF connector provided
Dedicated Antennas (equipment with antenna connector)
Single power level with corresponding antenna(s)
Multiple power settings and corresponding antenna(s)
Number of different Power Levels:
Power Level 1: dBm
Power Level 2: dBm
Power Level 3: dBm
NOTE 1: Add more lines in case the equipment has more power levels.
NOTE 2: These power levels are conducted power levels (at antenna connector).

• For each of the Power Levels, provide the intended antenna assemblies, their corresponding gains (G) and the resulting e.i.r.p. levels also taking into account the beamforming gain (Y) if applicable

Power Level 1: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1			
2			
3			
4			

NOTE 3: Add more rows in case more antenna assemblies are supported for this power level.

Power Level 2: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1			
2			
3			
4			

NOTE 4: Add more rows in case more antenna assemblies are supported for this power level.

Power Level 3: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
1			
2			
3			
4			

NOTE 5: Add more rows in case more antenna assemblies are supported for this power level.

n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined equipment or test jig in case of plug-in devices:

	Details provided are for the: Stand-alone equipment
	combined equipment
	🗌 test jig
	Supply Voltage AC mains State AC voltageV
	DC State DC voltage V
	In case of DC, indicate the type of power source
	Internal Power Supply
	External Power Supply or AC/DC adapter
	Battery
	Other:
0)	Describe the test modes available which can facilitate testing:
p)	The equipment type (e.g. Bluetooth [®] , IEEE 802.11 TM , IEEE 802.15.4 TM , proprietary, etc.):
q)	If applicable, the statistical analysis referred to in clause 5.4.1 q)
	(to be provided as separate attachment)

r) If applicable, the statistical analysis referred to in clause 5.4.1 r)

(to be provided as separate attachment)

s) Geo-location capability supported by the equipment:

Yes

The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user

🗌 No

E.3 Configuration for testing (see clause 5.3.2.3 of ETSI EN 300 328 V2.2.2)

From all combinations of conducted power settings and intended antenna assembly(ies) specified in clause 5.4.1 m), specify the combination resulting in the highest e.i.r.p. for the radio equipment.

Unless otherwise specified in ETSI EN 300 328, this power setting is to be used for testing against the requirements of ETSI EN 300 328. In case there is more than one such conducted power setting resulting in the same (highest) e.i.r.p. level, the highest power setting is to be used for testing. See also ETSI EN 300 328, clause 5.3.2.3.

Highest overall e.i.r.p. value:	 dBm	
Corresponding Antenna assembly gain:	 dBi	Antenna Assembly #:
Corresponding conducted power setting: (also the power level to be used for testing)	 dBm	Listed as Power Setting #:

E.4 Additional information provided by the manufacturer

E.4.1 Modulation

ITU Class(es) of emission:

Can the transmitter operate unmodulated? yes no

E.4.2 Duty Cycle

Intermittent duty

Continuous operation possible for testing purposes

E.4.3 About the UUT

The equipment submitted are representative production models

If not, the equipment submitted are pre-production models?

If pre-production equipment are submitted, the final production equipment will be identical in all respects with the equipment tested

If not, supply full details

E.4.4 Additional items and/or supporting equipment provided

99

	Spare batteries	(e.g. for portable	equipment)
--	-----------------	--------------------	------------

- Battery charging device
- External Power Supply or AC/DC adapter
- Test jig or interface box
- **RF** test fixture (for equipment with integrated antennas)
- Combined equipment Manufacturer:

User Manual

Technical documentation (Handbook and circuit diagrams)

End of Test Report